
	 1	

LAMMPS	ReaxFF	
	

	
Purpose	of	Benchmark	
This	benchmark	models	the	reaction	of	crystalline	Hexanitrostilbene	(HNS)	
energetic	material	at	the	atomic	scale.	The	benchmark	uses	the	reactive	forcefield	
(ReaxFF)	in	the	LAMMPS	molecular	dynamics	code,	see	http://lammps.sandia.gov.	
	
Characteristics	of	Benchmark	
The	ReaxFF	code	has	two	main	parts.	The	first	is	the	computationally	expensive	
ReaxFF	potential,	which	consists	of	several	deeply	nested	loops	that	compute	the	
forces,	energy,	and	pressure	of	chemically	reacting	systems.	The	second	part	is	a	
dynamic	charge	equilibration	scheme	(QEq)	that	computes	variable	charges	on	
atoms	by	solving	a	sparse	matrix	equation.	
	
Mechanics	of	Building	Benchmark	
To	compile	the	CPU-only	version	(uses	src/MAKE/Makefile.mpi):	

• cd src 
• make yes-user-reaxc 
• make -j mpi 

For	more	information	on	building	and	running	LAMMPS,	see	
http://lammps.sandia.gov/doc/Section_start.html.		
	
To	compile	the	native	OpenMP	version	on	Vulcan	or	Sequoia	(uses	
src/MAKE/OPTIONS/Makefile.bgq):	

• export IBM_MAIN_DIR=/opt/ibmcmp/ 
• cd src 
• make yes-user-reaxc 
• make yes-user-omp 
• make -j bgq	

For	more	information	on	building	and	running	with	the	native	OpenMP	version	
(USER-OMP	package),	see	http://lammps.sandia.gov/doc/accelerate_omp.html.	
	
To	compile	the	Kokkos	CUDA	version	(uses	
src/MAKE/OPTIONS/Makefile.kokkos_cuda_mpi):	

• cd src 
• make yes-user-reaxc 
• make yes-kokkos 
• make -j kokkos_cuda_mpi KOKKOS_ARCH=Power8,Pascal60 

For	more	information	on	building	and	running	with	the	LAMMPS	KOKKOS	package,	
see	http://lammps.sandia.gov/doc/accelerate_kokkos.html.	
	
Mechanics	of	Running	Benchmark	
To	run	on	a	single	core	with	the	CPU-only	version:	



	 2	

• cd reax_benchmark 
• mpiexec -np 1 ../src/lmp_mpi -v x 1 -v y 1 -v z 1 -in 

in.reaxc.hns -nocite 
 
The	command	"-v x 1 -v 1 -v z 1"	sets	the	x,	y,	and	z	dimensions	of	the	
benchmark.	To	double	the	benchmark	size	(i.e.	number	of	atoms),	double	the	
dimension	with	the	lowest	value,	i.e.	use	"-v x 2 -v y 1 -v z 1".	
	
To	run	on	4	P100	GPUs	using	Kokkos	CUDA:	

• cd reax_benchmark 
• mpiexec -np 4 --bind-to core 

../src/lmp_kokkos_cuda_mpi -k on g 4 -sf kk -pk kokkos 
neigh half neigh/qeq full newton on -v x 16 -v y 8 -v 
z 12 -in in.reaxc.hns -nocite 

	
To	run	on	96K	BG/Q	nodes	using	the	native	OpenMP	version	(8	MPI	x	8	OpenMP	per	
node):	

• export OMP_PLACES=threads 
• export OMP_PROC_BIND=true 
• export OMP_NUM_THREADS=8 
• cd reax_benchmark 
• srun -N 98304 --ntasks-per-node 8 ../src/lmp_bgq -sf 

omp -pk omp 8 -v x 256 -v y 256 -v z 576 -in 
in.reaxc.hns -nocite 

	
A	CORAL-2	size	problem	would	be	several	times	larger	than	the	above	BG/Q	
example.	
	
Verification	of	Results	
The	FOM	is	given	in	atom-timesteps/s	and	can	be	found	by	multiplying	the	
“timesteps/s”	output	from	the	LAMMPS	logfile	with	the	number	of	atoms	in	the	
simulation.	For	example,	if	a	1000	atom	simulation	took	2	seconds	to	run	100	
timesteps,	the	FOM	would	be	50,000	atom-steps/s.	From	an	actual	LAMMPS	logfile:	
	
Loop time of 331.426 on 262144 procs for 100 steps with 
478150656 atoms 
Performance: 0.003 ns/day, 9206.275 hours/ns, 0.302 
timesteps/s 
	
This	would	give	a	FOM	of	144.3	million	atom-steps/s.	
	
The	reference	FOM	for	96K	BG/Q	nodes	on	Sequoia	is	3.388	billion	atom-steps/s	for	
11.476	billion	atoms	(approximately	115K	atoms/node).	This	simulation	used	8	MPI	
x	8	OpenMP	threads	per	node	with	the	native	OpenMP	(USER-OMP)	version.	
	



	 3	

Most	of	the	benchmark	output	results	are	normalized	by	number	of	atoms	and	
should	remain	nearly	constant	with	problem	size,	except	for	volume.	The	output	
quantities	“Temp PotEng Press E_vdwl E_coul”	should	be	close	(i.e.	less	
than	0.1%	different)	to	an	unmodified	baseline	output	(either	MPI	only,	USER-OMP,	
or	KOKKOS)	for	the	same	problem	(i.e.	same	geometry,	#	of	MPI,	etc).	


